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Abstract 13 

Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river 14 

basins of India, are assessed to characterize their spatial and temporal variability. Groundwater 15 

storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with 16 

annual maxima observed during the monsoon season and minima during pre-monsoon season. 17 

Spatial variability of GWS anomalies increases with the extent of measurements, following the 18 
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power law relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent). 19 

In addition, the impact of well spacing on spatial variability and the power law relationship is 20 

investigated. We found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes 21 

to unweighted average over all wells. The absolute error corresponding to each basin grows 22 

with increasing scale, i.e., from 0.25 degree to 1 degree. It was observed that small changes in 23 

extent could create very large changes in spatial variability at large grid scales. Spatial 24 

variability of GWS anomaly has been found to vary with climatic conditions. To our knowledge, 25 

this is the first study of the effects of well spacing on groundwater spatial variability. The results 26 

may be useful for interpreting large scale groundwater variations from unevenly spaced or 27 

sparse groundwater well observations or for siting and prioritizing wells in a network for 28 

groundwater management. The output of this study could be used to maintain a cost effective 29 

groundwater monitoring network in the study region and the approach can also be used in other 30 

parts of the globe. 31 

Keywords: Groundwater, India, Groundwater spatial variability, Groundwater monitoring 32 

network design 33 

Highlights (within 85 characters): 34 

• 3907 in-situ groundwater observation wells are used to compute spatial variability 35 

• First study of spatial variability of groundwater storage affected by well spacing 36 

• Spatial variability of groundwater storage increases with increasing spatial extent 37 

• The output could be used to design cost-effective groundwater monitoring network 38 

• Log-linear relationship exists between groundwater spatial variability and extent 39 



 40 

Groundwater is a vital fresh water resource that is vulnerable to climate change and 41 

unsustainable rates of extraction (e.g., Wada et al., 2010; Famiglietti and Rodell, 2013; Taylor et 42 

al., 2013). Globally, about 38% of the irrigated land area are fed using groundwater resources 43 

(Siebert et al., 2010). Recent studies have detected rapid depletion of groundwater resources in 44 

many parts of the world using satellite observations (Rodell et al., 2009; Voss et al., 2013; Richie 45 

et al., 2015). 46 

Spatial variability of soil moisture has been extensively studied (Famiglietti et al., 2008; 47 

Brocca et al., 2012; Li and Rodell, 2013) and has been found to increase with increasing extent 48 

(the length scale of the major river basins within the study region) (Western and Blösch, 1999), 49 

following the power law relationship. Few studies have been conducted on groundwater spatial 50 

variability owing to the scarcity of available, high quality measurement time-series at regional 51 

scales. Inadequate information on sub-surface properties such as specific yield, which is required 52 

to convert water table measurements to water storage, also complicates such analyses. Li et al. 53 

(2015) studied groundwater storage variability using data from 181 monitoring wells in the 54 

central and northeastern U.S and found that the spatial variability of groundwater storage 55 

anomalies follow the power law relationship.  However, observation wells in that study were 56 

sparse in some areas and sampled only at a small range of climate conditions.  57 

Studying groundwater variability across scales may benefit efforts to evaluate and 58 

interpret remote sensing based estimates and to improve numerical models, and also to better 59 

predict groundwater responses to climate change and anthropogenic impacts (Taylor et al., 60 

2013). Further, groundwater variability scaling information could be used to improve 61 

comparisons between point-scale and remote sensing estimates. The Gravity Recovery and 62 



Climate Experiment (GRACE) satellite observations have proven useful for evaluating 63 

groundwater variations and trends at regional scales (e.g., Rodell et al., 2007). GRACE data 64 

assimilation enables spatial, temporal, and vertical partitioning of GRACE TWS observations 65 

using an ensemble Kalman smoother approach (Zaitchik et al., 2008), but it is limited by the 66 

fidelity of the land surface model and the accuracy of the meteorological forcing inputs. In 67 

particular, models currently used for GRACE data assimilation, are representing hydrogeological 68 

processes in a rudimentary fashion and do not account for human interactions. Improved 69 

understanding of groundwater dynamics and how they vary with scale may be useful for 70 

interpreting large scale groundwater variations from unevenly spaced or sparse groundwater well 71 

observations, for siting and prioritizing wells in a network for groundwater management, and for 72 

identifying environmental controls on groundwater (Li et al., 2015). 73 

In this study, we examined temporal and spatial groundwater storage anomaly variability 74 

within 22 major river basins in India. A dense monitoring network of over 3900 observation 75 

wells was used to study the dependency of groundwater storage variability on both extent and 76 

spacing, the two components of the scale triplet (Western and Blösch, 1999). Extent describes 77 

the spatial scale of a study area and spacing refers to the distance between the two observations 78 

(Western and Blösch, 1999). To our knowledge, this is the first study of the effects of well 79 

spacing on groundwater spatial variability. 80 

2 Data and Methods 81 

2.1 Study area 82 

 India is comprised of 22 major river basins (Figure 1 and Table 1), based on India-WRIS 83 

(2012). The Ganges river basin (basin 2a) is the largest, with an area of 808,334 km2, and the 84 



basin 16 is the smallest with an area of 10,345 km2 (Table 1). The hydrogeological settings of the 85 

river-basins are highly heterogeneous. For example, major parts of the Ganges basin has 86 

comprised of highly conducive, fluvial sediments, while, some parts of southern and western 87 

Ganges basin, has comprised of less conducive, volcanic and crystalline materials (Mukherjee et 88 

al., 2015; Bhanja et al., 2016). Annual precipitation rate (averaged over 1962 and 2011) in the 89 

entire country is 1083 mm/year (WBA, 2015) but varies considerably, with extremely low 90 

precipitation (<150 mm/year) observed in the western part of the country, and high precipitation 91 

(>2500 mm/year) in the east (Mukherjee et al., 2015). At the basin scale, the maximum and 92 

minimum precipitation occur in the basin 2c (2759 mm/year) and the Indus basin (basin 1; 545 93 

mm/year), respectively. 94 

2.2 Groundwater level measurement 95 

Seasonal (during January, May, August and November, respectively) groundwater level 96 

measurement data were obtained from a dense network of groundwater observation wells 97 

(>13,000) maintained by India’s Central Ground Water Board (CGWB) between 2005 and 2013. 98 

More than 85% of these wells are located in unconfined aquifers (CGWB, 2014). The quarterly 99 

water level measurements are representing groundwater level scenario in different season such 100 

as, measurements in January and November represent post-monsoon water level, that in May 101 

represents pre-monsoon and measurement in August represent monsoon-time water level. 3907 102 

wells were selected for this study based on their temporal continuity and seasonality.  103 

The sign of groundwater level depths are reversed in order to represent groundwater 104 

level. Subsequently; groundwater level anomalies (GWLA) were calculated after removing long-105 

term mean values from its individual values in each of the selected wells. In order to get time 106 



series of groundwater storage (GWS) anomaly, GWLA values were multiplied by specific yield. 107 

Aquifer specific yield (Sy) values were obtained from the CGWB database (CGWB, 2012a), 108 

which was constructed from long term pumping test results, and assigned to wells based on  109 

aquifer characteristics (Mukherjee et al., 2015) and other available information (i.e. map of 110 

aquifer systems of India) from CGWB (CGWB, 2012b). The mean Sy values ranged from 0.02 111 

and 0.13 within the study area. The average depth to water in all the basins varies from 2 to 9 m 112 

below ground surface. The deepest groundwater table is in the Indus basin (basin 1), where 113 

lowest precipitation rate has been observed, and the shallowest is in basin 2c, where precipitation 114 

rate is found to be the highest within all the basins (Table 1). 115 

Since the observational network is dense, we designed three additional sampling schemes 116 

to study how well spacing may affect groundwater spatial variability and also to study their scale 117 

dependency. Figure 2 shows the well locations that are used at the 0.25 degree, 0.5 degree, and 1 118 

degree resolution, respectively. The well closest to each grid center was selected and the rest are 119 

discarded. In between three spatial resolutions, well spacing is lowest in 0.25 degree and highest 120 

in 1 degree scale. For example, considering all the wells used in our study at all the three spatial 121 

resolutions, and total geographical area, well spacing is 1 well per 1671 km2 (0.25 degree), 1 122 

well per 4026 km2, or 1 well per 12253 km2 on average (Figure 2). 123 

2.3 Precipitation data 124 

We used precipitation data from the archives of the Tropical Rainfall Measuring Mission 125 

(TRMM), a joint satellite mission of NASA and JAXA (Kummerow et al., 2000). In particular, 126 

the monthly gridded (0.250 × 0.250) 3B43 product, version 7, was used here. This product 127 

combines satellite retrievals with rain gauge data from Global Precipitation Climatology Centre 128 



(GPCC). To be consistent with groundwater measurements, seasonal precipitation was calculated 129 

for the four time-periods: December-January, February-May, June-August and September-130 

November. 131 

2.4 Scale dependency  132 

Information on scale dependency can be useful for designing effective ground-based 133 

monitoring networks and for upscaling point measurements. Earlier studies on soil moisture 134 

(Famiglietti et al., 2008; Li and Rodell, 2013) and groundwater (Li et al., 2015), have shown that  135 

spatial variability increases as a power function of extent, which can be described as a linear 136 

function when log transformation is applied (Li et al., 2015): 137 

log(y) = Hlog() + C        (1) 138 

where, y is the spatial variability at extent , H and C are the slope and intercept of the 139 

linear relationship between log-(spatial variability) and log-extent, respectively. 140 

The power law relationship can be used to estimate sampling sizes for desired accuracies 141 

in a region (river basin here) using this equation (Wang et al., 2008; Li et al., 2015):  142 

N = t2
1-(α/2),N-1 (2)/(d2)        (2) 143 

where, N is the number of samples,  is the spatial variability, d is the desired accuracy 144 

(absolute error), t2
1-(α/2),N-1 is the Student's t-distribution at the significance level α (5% used 145 

here). Since N is unknown initially, we used an iterative method to estimate N (Wang et al., 146 

2008). 147 



Combining equations 1 and 2, we obtain the following equation to calculate the samples 148 

needed for any region: 149 

N = t2
1-(α/2),N-1 (e

2c2H)/(d2)        (3) 150 

3 Results 151 

3.1 Spatial mean and variability 152 

Time-series of groundwater storage anomalies, spatial variability (represented by spatial 153 

standard deviation) and precipitation are shown in Figure 3. Major parts of the northern and 154 

central India were subjected to drought in 2009-10 (NCC, 2013), consequently, GWS anomalies 155 

have also exhibited lowest values in 2009-10 (e.g., in basins 1, 2a, 2b, 3, 6, 7, 8, 10, 11, 12, and 156 

20). India, the country as a whole (except the southern region), receives the maximum 157 

precipitation during the monsoon season (June to September) (NCC, 2013). On the other hand, 158 

the monsoon season extends to October, sometimes even to November, in the southern part of 159 

the country (NCC, 2013). The characteristics of temporal pattern of precipitation are also 160 

reflected in the seasonal GWS anomalies (Figure 3). Maximum GWS anomalies are observed 161 

during the monsoon period in basins 1, 2a, 2b, 2c, 6, 7, 8, 10, 11, 12, 13, 14, and 20, and 162 

immediately after the monsoon in basins 3, 4, 5, 9, 15, 16, and 17 that are located in the southern 163 

India. GWS minima are observed during the pre-monsoon period in all the basins.  164 

Spatial variability of GWS anomalies, in terms of standard deviation, is shown in Figure 165 

3. The relationship between spatial variability and groundwater storage anomaly is further 166 

investigated through Figure 4. Spatial variability show increasing trend with increasing mean 167 

GWS anomaly in most of the basins, 1, 2a, 2b, 2c, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15 and 20, 168 



respectively. We observe an upward concave relationship between spatial variability and mean 169 

GWS anomaly in the above mentioned basins (Figure 4).  170 

3.2 Scale dependency 171 

Figure 5a shows the relationship between log-(spatial variability) and log-extent for all 172 

the basins. Here the extent of each basin was estimated as the square root of the basin area (Table 173 

1) following Famiglietti et al. (2008) and Li et al. (2015). Here, spatial variability was obtained 174 

by taking mean of all standard deviations of all seasons. Log-(spatial variability) increases 175 

linearly (significant at the 0.1 level) with the log-(extent). Some of the data points are located far 176 

away from the best fitted line. This might be a result of dynamic variability of GWS anomaly 177 

across the basins, heterogeneous aquifer hydrogeological properties, or heterogeneous patterns of 178 

groundwater usage in different basins. Influence of dynamic range differences are eliminated by 179 

computing normalized standard deviation as described by Li et al. (2015) (Figure 5a). Spatial 180 

variability was standardized using temporal standard deviations over all wells. However, we 181 

found insignificant increase with near-zero slope (0.02) in the log-log graph (Figure 5a).  182 

The linear relationship between log-(spatial variability of specific yield) and log-extent 183 

(Figure 5b) is insignificant. However, log (spatial variability of precipitation) increases linearly 184 

(significant with p value < 0.05) with log-extent (Figure 5c). These combine results suggest that 185 

GWS spatial variability is influenced more by climate than by aquifer properties.  186 

Equation 2 assumes data are normally distributed, which can be tested using the statistical 187 

properties of the data. Figure 6 shows distribution of GWS anomaly within 4 largest basins, 188 

GWS anomaly follows similar distribution in other basins. The thickness of the box indicates the 189 

inter-quartile range (25 to 75th percentile) of the data; horizontal line within the box specify 190 



median values; black filled circles inside the box shows mean values; upper and lower limits of 191 

whisker indicate ±1  deviation from the mean; top and down black filled stars showing 99% 192 

and 1% data, respectively. In general, we observe characteristics of normal distribution in GWS 193 

anomaly in all the basins: mean and median GWS anomaly values closely follow each other 194 

(Figure 6); the inter-quartile range (50% of the data lies between 25% and 75%) is well within 1-195 

 values (Figure 6). The solutions of Equation (3), for different levels of accuracy, are plotted in 196 

Figure 7. The number of wells increase with increasing extent for an absolute error level. The 197 

number of wells used within each studied basin vs. their extent are also plotted. It is found that 198 

the absolute error level is smallest (less than 0.5 cm) in basins 2a and 4, which contains 199 

comparatively higher number of wells, and largest (more than 2.0 cm) in basin 2c, which 200 

contains only six wells. 9 basins (basin 2a, 2b, 3, 4, 5, 8, 14, 18, and 20) exhibit absolute error 201 

levels less than 1 cm. Absolute error levels of the basins studied here were lower than those of 202 

the regions studied by Li et al. (2015) due to the greater density of CGWB’s Indian groundwater 203 

level network. 204 

4 Discussions 205 

4.1 Spatial variability in groundwater storage anomaly 206 

Spatial variability of GWS anomalies can be attributed to several factors including non-207 

uniformities of precipitation, groundwater withdrawals, hydrogeological properties, and 208 

groundwater discharge. Temporal variability of GWS anomalies is linked with seasonal 209 

precipitation and subsequent hydrological processes (Li et al., 2015). We observed an upward 210 

concave relationship between spatial variability and mean GWS anomaly (also observed by Li et 211 

al., 2015), unlike the upward convex relationship observed in soil-moisture studies (Owe et al., 212 



1982; Famiglietti et al., 2008; Rosenbaum et al., 2012). Although soil physical processes control 213 

the convexity of the standard deviation vs. mean soil moisture curve, the lower and upper bounds 214 

of the curve are entirely dependent upon the saturation capacity of the soil, which will show less 215 

variation once it reaches its limit (Li and Rodell, 2013). On the other hand, unconfined 216 

groundwater storage rarely has any hard limits and hence, GWS variability is not restricted to 217 

any boundary conditions (Li et al., 2015). As the magnitude of GWS is highly variable in space, 218 

spatial variability is more likely to be higher during GWS extremes (Li et al., 2015). 219 

The upward concave relationship is less obvious or non-existent in certain basins (e.g., 5, 220 

17, 19). In those basins the mean GWS anomaly rarely exceeded a magnitude of 5 cm, which is 221 

when the increase in standard deviation became evident in other basins. These smaller anomalies 222 

may be explained by the fact that, in southern India, moderate rainfall occurs during the post-223 

monsoon period unlike the other parts of the country. As a result, GWS is less variable 224 

throughout the year in southern India. 225 

Observation of very small insignificant slope in the log-log graph of normalized standard 226 

deviation vs. extent, suggesting climate-related temporal variability of groundwater is the 227 

dominant factor controlling differences in spatial variability in India. Normalized standard 228 

deviation reflects the difference in the seasonal variation of groundwater storage anomalies at 229 

different wells. As the data were sampled at only four times a year, the temporal variation of the 230 

seasonality was not well captured.  On the other hand, groundwater storage may indeed vary in 231 

strong synchronization due to the impact of monsoons in most regions. Groundwater spatial 232 

variability in India may be strongly influenced by climate (such as annual precipitation) than by 233 

other factors such as natural groundwater discharge etc. 234 



4.2 Effect of well spacing across different spatial scales 235 

To investigate the effect of different sampling spacing on the scale dependency, we 236 

plotted the logarithm of spatial variability against logarithm of extent for the three sampling 237 

schemes mentioned earlier (Figure 8). Statistically significant (p values < 0.05) increasing linear 238 

relationship has been observed between logarithm of spatial variability against logarithm of 239 

extent similar to that derived based on all data (all the wells present within each basin are used, 240 

no spatial scaling are done). The slope of linear relationship increases with decreasing well 241 

spacing (Table 2), similar to observation of Li and Rodell (2013) for soil moisture observations. 242 

Thus, spatial variability increases rapidly with increasing extent for increasing well spacing. 243 

Hence, the effect of change in extent on spatial variability has been reduced with increasing 244 

spatial scales, as we observed very large change in spatial variability for smaller change in extent 245 

at larger well spacing i.e. data at 1 degree-scale (Figure 8c). 246 

Slope and intercept values (Table 2) at 0.25, 0.5 and 1 degree-scale, were further used in 247 

Equation (3), subsequently, the solutions are plotted in Figure 9. The number of representative 248 

wells required to maintain a good groundwater monitoring network has been increasing with 249 

increasing spatial extent in a particular absolute error level for all the spatial scales. The number 250 

of wells (Table 1) used in different spatial scale for each basin against their extent are also 251 

plotted in Figure 9. The number of wells are decreasing with increasing spatial scale i.e. between 252 

0.25 and 1 degree; highest number of wells were used in 0.25 degree-scale comparing all the 253 

scales. Slope and intercept obtained through Figure 9, are mainly used for calculation of absolute 254 

error levels using Equation (3). The absolute errors at 0.25 degree-scale closely matches with 255 

that for all data (Figure 7 and 9a). Similar to absolute errors for all data, only one basin (basin 256 

2c) exhibit more than 2 cm absolute error, and 8 basins (out of 9 basins for all data) show errors 257 



less than 1 cm. Absolute error level increases at 0.5 degree-scale (absolute error level higher than 258 

2 cm in 6 basins) and showing highest values at 1 degree-scale (absolute error level higher than 2 259 

cm in 12 basins) (Figure 9b and 9c). Only one basin (basin 4) exhibit absolute error level less 260 

than 1.5 cm and 9 other basins exhibit less than 2 cm absolute error levels at 1 degree-scale 261 

(Figure 9c). We found an increase in absolute error level with increasing spatial scales, i.e., from 262 

0.25 degree to 1 degree.  263 

Among the three different spatial scales (e.g., 0.25 degree, 0.5 degree and 1 degree-264 

scale), mean GWS anomaly at 0.25 degree spatial scale matches closely with mean values in all 265 

wells and the distant matches has been observed at 1 degree-scale. The absolute error in GWS 266 

anomaly also increases with increasing spatial scales (Figure 7 and 9). Although the desired 267 

accuracy level depends on end-user's application, we recommend using finest available spatial-268 

scale for validating satellite retrievals, model validation etc. 269 

4.3 Designing cost-effective groundwater monitoring network 270 

The output of this study can be used to design a cost-effective groundwater monitoring 271 

network within the study area. The end-user could pre-select the optimum error level and use our 272 

data to compute the minimum number of wells required to reach the accuracy level in the study 273 

area. For example, assuming the end-user want to keep the absolute error level within 2 cm, they 274 

could only select the wells used for 1 degree well spacing (Figure 2c) in basins, 2a, 2b, 3, 4, 8, 275 

12, 13, 14, 18, and 20 (Figure 9c). This will largely reduce the maintenance cost for establishing 276 

a well-defined groundwater monitoring network. This approach could also be applied in different 277 

parts of the globe. 278 

5 Conclusions 279 



We used seasonal groundwater level measurements at 3907 wells located in 22 major 280 

river basins in India to study spatio-temporal variability of groundwater storage (GWS) 281 

anomalies. Three distinct spatial scales were used to examine the effects of well spacing on the 282 

mean and variability of GWS anomalies. Our key findings include: 283 

1. Spatial variability of groundwater storage anomalies are influenced by well spacing. 284 

2. Spatial variability of GWS anomalies increases with increasing spatial extent at all 285 

spatial scales i.e. 0.25, 0.5 and 1 degree. 286 

3. The output of this study could be used to design cost-effective groundwater monitoring 287 

network in the study region. 288 

4. A positive linear relationship does exist between the logarithm of GWS anomaly and 289 

the logarithm of spatial extent. 290 

5. Spatial variability of GWS anomaly increases during the wettest (monsoon) and driest 291 

(pre-monsoon) periods of the year in most of the regions. 292 

Our study indicates that the uncertainty in regional GWS anomaly estimates based on 293 

data from the CGWB’s well network is relatively low, owing to the high density of observations 294 

in that network. Results of this study confirm previously inferred scaling behaviors of 295 

groundwater storage in the central and eastern U.S. (Li et al., 2015), demonstrating that those 296 

behaviors hold true in a region with a different climate and hydrogeology and with a vastly 297 

increased sampling density. These data could also be useful for validating satellite-based and 298 

model-based estimates of groundwater variability in India and other regions with similar climatic 299 

and hydrogeologic features.  300 
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Table 1: Basin number, name, geographical area, number of wells used, specific yield (Sy), groundwater level depth range, and 369 

average annual precipitation 370 

Basin 

no. 

Basin name  Area 

(km
2
)  

Wells Sy GWL 

Depth 

Range (m) 

Precipitation 

(mm/yr)  

1  Indus Basin (Indian part)  453932 140 0.095 0 – 78.8 545

2a  Ganges Basin 808334 861 0.044 0 – 60.6 1088

2b  Brahmaputra Basin 186422 152 0.087 0 – 19.6 2323

2c  Barak and others Basin
 

45622 6 0.045 0 – 6.1 2759

3  Godavari Basin
 

302064 460 0.023 0 – 35.0 1255

4  Krishna Basin
 

254743 547 0.022 0 – 48.1 1078

5  Cauvery Basin
 

85624 302 0.024 0 – 59.3 1344

6  Subarnarekha Basin
 

25792 22 0.035 0 – 14.6 1555

7  Brahmani and Baitarni Basin
 

51894 87 0.057 0 – 13.7 1537

8  Mahanadi Basin
 

139659 167 0.039 0 – 33.2 1452

9  Pennar Basin
 

54243 100 0.022 0 – 47.5 800



10  Mahi Basin
 

38337 55 0.029 0 – 34.3 1010

11  Sabarmati Basin
 

30679 36 0.023 0 – 30.9 949

12  Narmada Basin
 

92671 114 0.021 0 – 30.8 1219

13  Tapi Basin
 

63923 87 0.020 0 – 38.0 1066

14  West flowing rivers South of Tapi 

Basin
 

111644 178 0.021 0 – 35.0 2536

15  East flowing rivers between 

Mahanadi and Godavari Basin
 

46243 78 0.035 0 – 21.2 1498

16  East flowing rivers between 

Godavari and Krishna Basin
 

10345 27 0.066 0 – 20.7 1208

17  East flowing rivers between 

Krishna and Pennar Basin
 

23336 32 0.019 0 – 26.9 961

18  East flowing rivers between 

Pennar and Cauvery Basin
 

63646 219 0.023 0 – 49.0 1154

19  East flowing rivers South of 

Cauvery Basin
 

38646 104 0.023 0 – 24.4 1121



20  West flowing rivers of Kutch and 

Saurashtra including Luni Basin
 

184441 133 0.024 0 – 51.5 616

 371 

Table 2: Slope and intercept values obtained from fitting the log-extent and log-(spatial variability) following equation 1. All the data 372 

are statistically significant at 10% level 373 

 Slope (H)  Intercept (C)  

All data  0.16  0.86  

0.25 d  0.22  0.48  

0.5 d  0.52  -1.33  

1 d  0.72  -2.67  

 374 



 375 

376 
 Figure 1: Boundaries of 22 river basins (names are given in Table 1) within India and 377 

locations of groundwater wells used in this study (indicated by small filled circles) 378 



 379 

 380 

Figure 2: Well locations used at (a) 0.25 degree, (b) 0.5 degree and (c) 1 degree resolution 381 

 382 



 383 

384 



 385 

Figure 3: Time series of seasonal mean GWS anomaly (cm, blue filled circles), spatial 386 

variability (cm, standard deviation, black filled squares) and seasonal precipitation (mm, 387 

columns) for all the basins. The X-axis represents the seasons from 2005 to 2013 (four for 388 

each year) 389 

 390 



 391 

 392 



 393 

Figure 4: Scatter plots of spatial variability (standard deviation) vs. mean GWS anomaly for all 394 

the basins 395 

 396 



Figure 5: Logarithm of spatial mean spatial variability (standard deviation) of (a) GWS 397 

anomaly, (b) specific yield and (c) precipitation, plotted against logarithm of spatial mean 398 

extent for all the basins 399 

 400 

Figure 6: Box-Whisker plot of GWS anomaly for all the seasons at 4 largest basins. The extent 401 

of the box indicates the inter-quartile range (25 to 75th percentile) of the data; horizontal line 402 

within the box specify median values; black filled circles inside the box show mean values; 403 

upper and lower limits of whisker indicate ±1  deviation from the mean; top and down 404 

black filled stars showing 99% and 1% data, respectively 405 



 406 

Figure 7: Number of wells required to represent the spatial mean at four different absolute error 407 

level as a function of their extent. The number within the squares indicating basin numbers 408 

(Table 1) corresponding to their extent and number of wells 409 

 410 



Figure 8: Logarithm of spatial mean spatial variability (standard deviation) of GWS anomaly 411 

plotted against logarithm of spatial mean extent for all the basins at (a) 0.25 degree, (b) 0.5 412 

degree and (c) 1 degree-scale 413 

 414 

Figure 9: Number of wells required to represent the spatial mean at four different absolute error 415 

level as a function of their extent at (a) 0.25 degree, (b) 0.5 degree and (c) 1 degree-scale. 416 

The number within the squares indicating basin numbers (Table 1) corresponding to their 417 

extent and number of wells 418 


